2018 ANNUAL EVALUATION OF FUEL CELL ELECTRIC VEHICLE DEPLOYMENT & HYDROGEN FUEL STATION NETWORK DEVELOPMENT

Findings and Special Topics

Andrew Martinez, PhD andrew.martinez@arb.ca.gov (916) 322-8449

Overview of AB 8

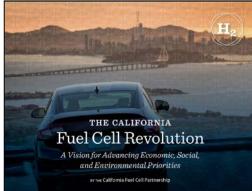
- Signed by Governor
 Brown in 2013
- Allocates up to \$20M annually for hydrogen infrastructure investment

- CARB annually reports to Energy Commission
 - Current and projected FCEV fleet and station progress
 - Assessment of coverage and capacity
 - Recommended station placement
 - Recommended funding level
 - Recommended station technical specifications

Background

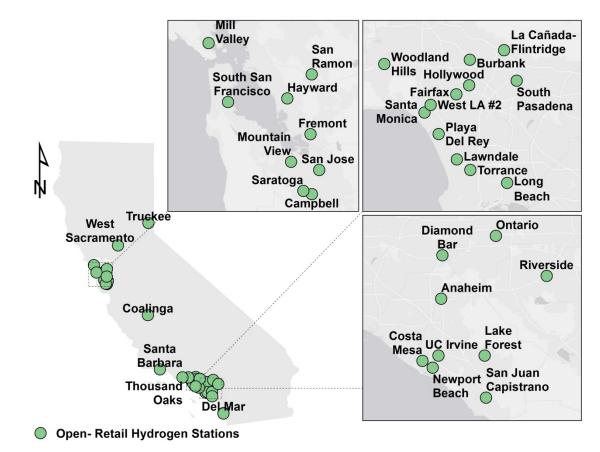
 Zero Emission Vehicles vital to addressing air quality & climate change

- Goal to enable industry to scale up to a self-sustained market
- Hydrogen fueling stations are needed ahead of FCEVs to enable market launch

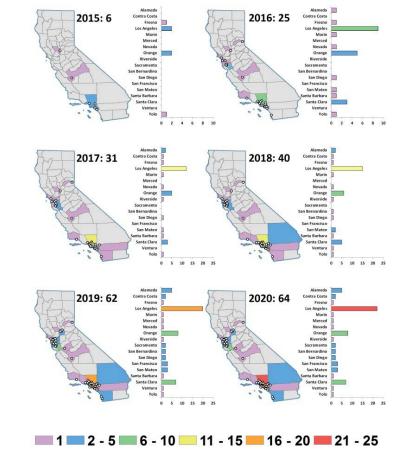

Major Influences

• EO B-48-18:

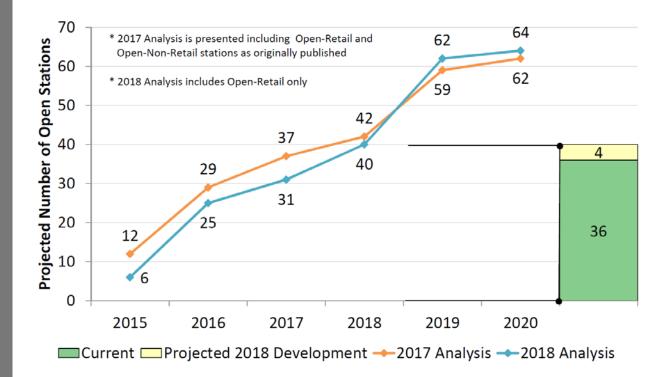
- 200 stations by 2025 (only 2 years after AB 8)
- 250,000 chargers (10,000 DC) by 2025
- 5,000,000 ZEVs in California by 2030
- Expand infrastructure through the Low Carbon Fuel Standard
- The California Fuel Cell Revolution:
 - Public-private cooperation
 - Shared vision for 2030
 - 1,000,000 FCEVs and 1,000 stations as early as 2030
 - Market support and expansion strategies


Image courtesy of CaFCP

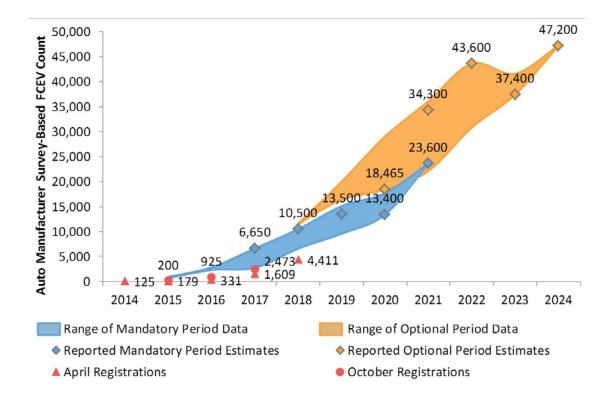
FINDINGS

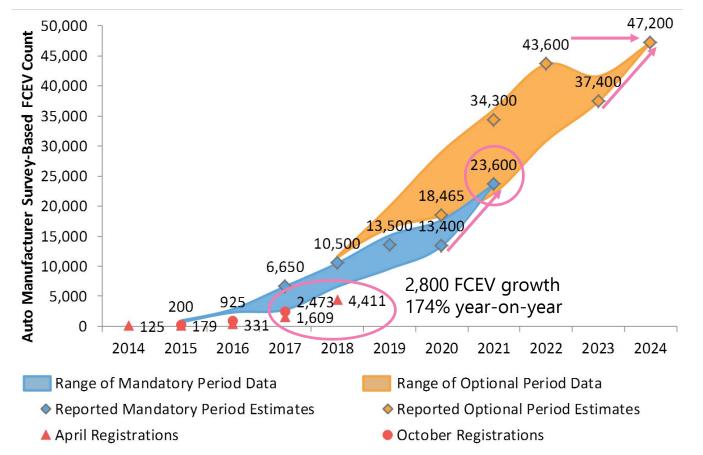


California's fueling network continues to mature

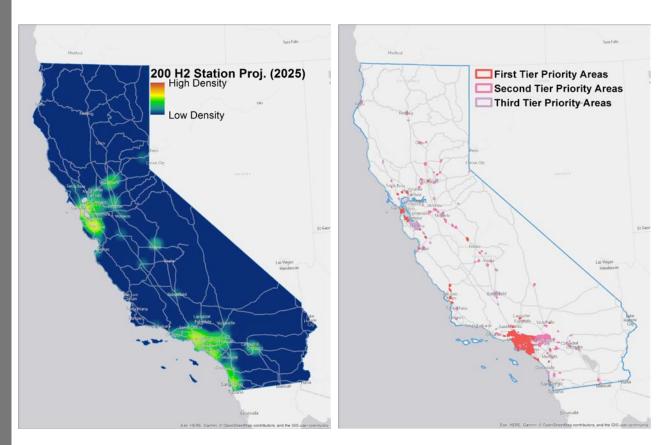


All station tracking on Open-Retail basis


Upgrade of Newport Beach to Retail fully self-funded



Station deployment in the past year has remained almost completely on schedule

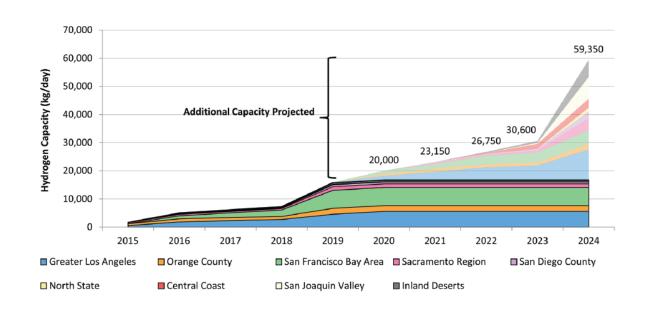


Auto manufacturer projections for future FCEV releases have recovered substantially

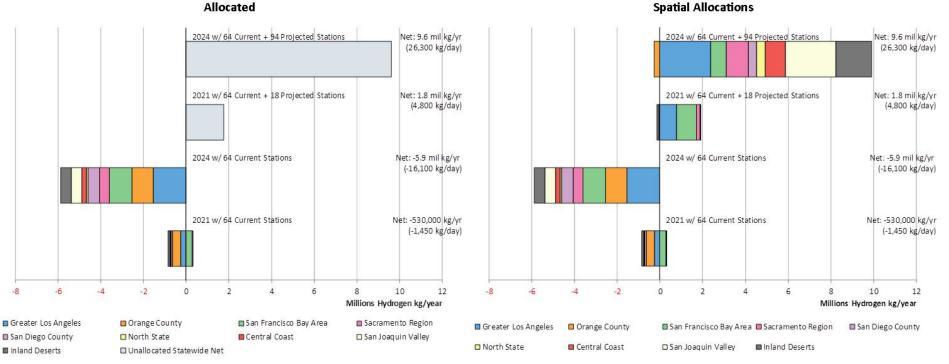
New station priorities can be informed by work completed to support EO B-48-18 and CaFCP 2030 vision

CHIT analyses demonstrate a path to 2025 and 2030 goals that satisfies market needs and ensures equitable benefits

64 Stations CalEnviroScreen Score	Count of Stations	Population in Station Home Tract	Population in 15-Minute Coverage	Percent of CA Population in 15-Minute Coverage	Percent of Covered Population
Non-DAC Subtotals:	52	262,415	12,118,311	32.5%	79%
DAC Subtotals:	12	46,604 (~1% of all DAC)	3,238,482 (~35% of all DAC)	8.7%	21%
Totals	64	309,019	15,356,793	41.2%	100%

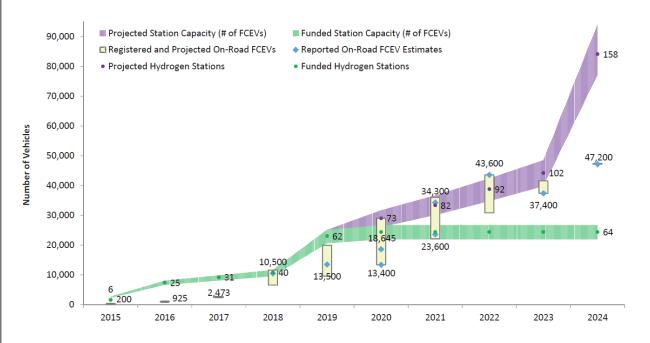

For Reference: CalEnviroScreen Indicates 9,152,024 Residents Living in Disadvantaged Communities

1,000 Stations CalEnviroScreen Score	Count of Stations in Future Priority Areas*	Population in Priority Areas	Population in 15-Minute Coverage	Percent of CA Population in 15-Minute Coverage	Percent of Covered Population
Non-DAC Subtotals:	403	17,704,848	26,199,288	70.3%	75%
DAC Subtotals:	597	7,663,418 (~84% of all DAC)	8,883,966 (~97% of all DAC)	23.8%	25%
Totals	1,000	25,368,266	35,083,254	94 .1%	100%

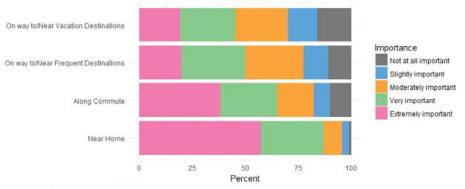

For Reference: CalEnviroScreen Indicates 9,152,024 Residents Living in Disadvantaged Communities

* Counts for Priority Areas include all Priority Areas that partially or wholly overlap a DAC. Data for populations in Priority Areas and 15-Minute Coverage are exact and only include population wholly contained within both the DACs and either Priority Areas or 15-Minute Coverage.

It is possible to meet projected FCEV fueling capacity needs through 2025 by meeting the goals of EO B-48-18



Potential Regional Hydrogen Balance Following CHIT-led Network Growth


Potential Regional Hydrogen Balance without Stations Spatially Allocated

Achieving the goals of EO B-48-18 enables two to three times greater FCEV deployment than currently planned

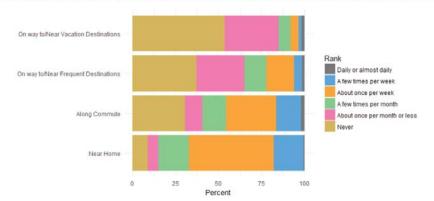
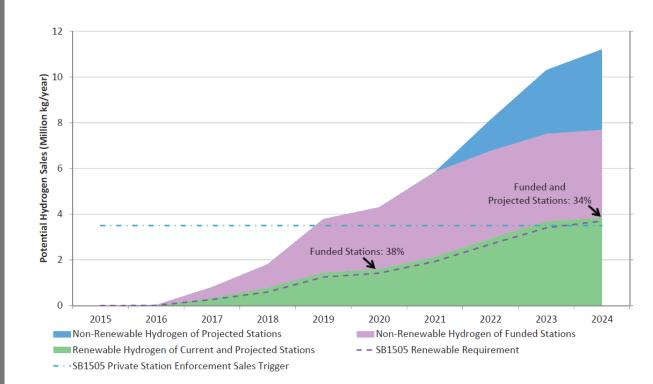
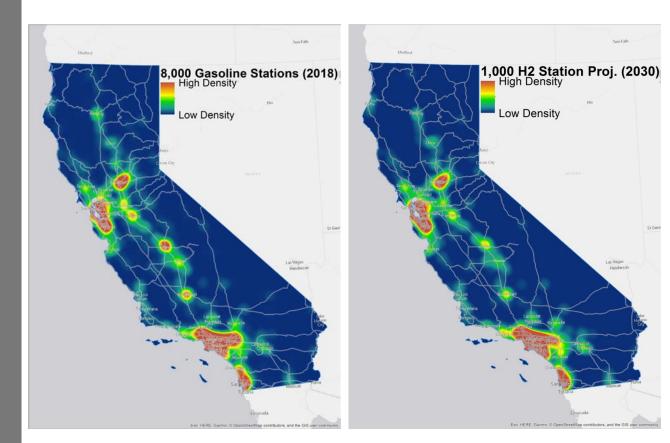
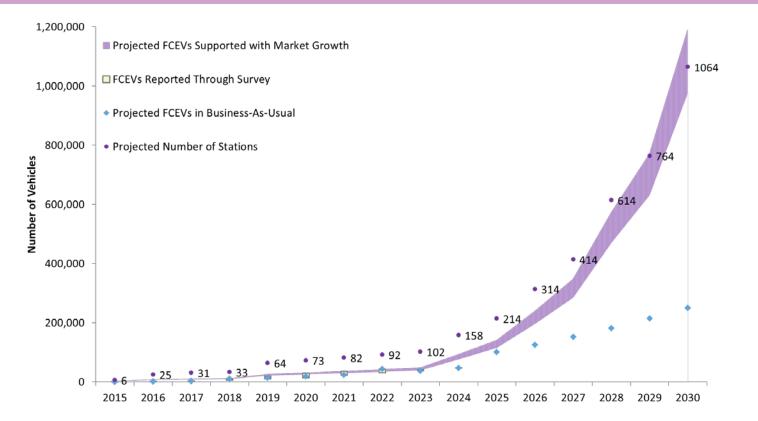

Analysis of FCEV drivers' selfreported fueling habits through the CVRP survey provide valuable insights into network planning approaches

Figure 25: Importance of Hydrogen Stations in Categorized Locations to Purchase Decision



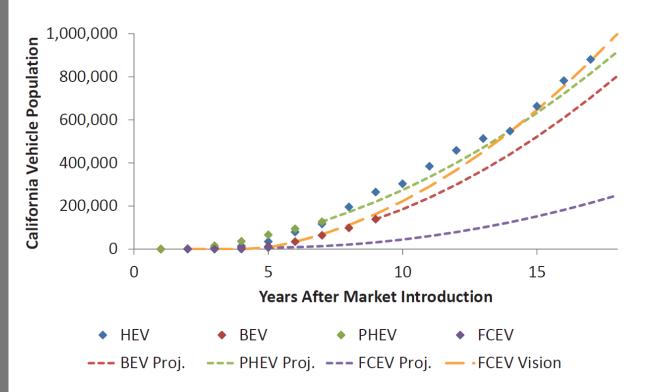
Finding 8




California's hydrogen fueling network is on track to satisfy the 33% renewable requirement of SB 1505

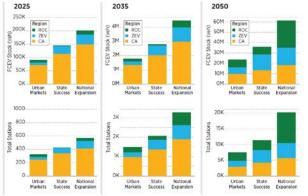
Achieving the 2025 goals of EO B-48-18 enables California to achieve the CaFCP 2030 goals and requires accelerated investment

NOTE: Figure does not appear in report, but generated from same data


2030 SCENARIO

ANALYSIS

Why 1M FCEVs by 2030?

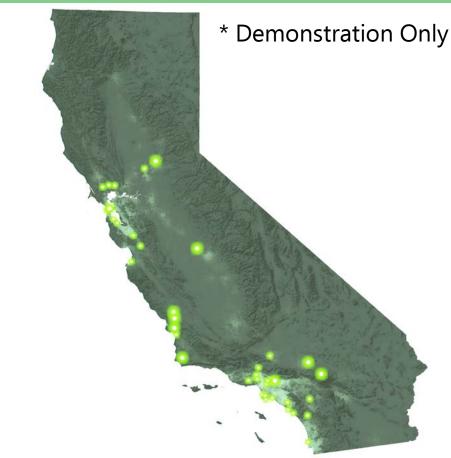

Business-as-Usual projections do not indicate mass-market FCEV entry

Why 1M FCEVs by 2030?

*From H2USA Locations Roadmap Working Group Publication National Hydrogen Scenarios (2017)

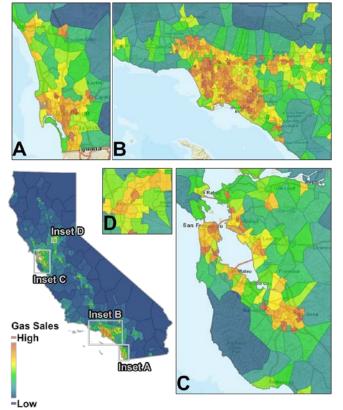
Independent studies confirm 1M FCEVs and 1k stations by 2030 is a reasonable expectation

*From Hydrogen Council Publication Hydrogen Scaling Up (2017)


- 1 in 12 cars in Germany, Japan, South Korea, and California powered by hydrogen
- Globally 10 to 15 million cars and 500,000 trucks powered by hydrogen
- Deployment of hydrogen-powered trains and passenger ships

2030 milestones 2050 target picture

- Up to 400 million passenger vehicles (~25%). 5 million trucks (~30%), and more than 15 million buses (~25%) running on hydrogen
- 20% of today's diesel trains replaced with hydrogen- powered trains
- 20 million barrels of oil replaced per day, 3.2 Gt CO, abated per year


Method

Iterative placement of stations using CHIT based on combined capacity and coverage evaluation

Method

Key input became gas station density template to tune hydrogen station density

Source: Air Resources Board analysis of Energy Commission PIIRA form CEC-A15 results Limited to two hydrogen stations per polygon

 Polygons semioptimized to contain *at least* 10 gas stations

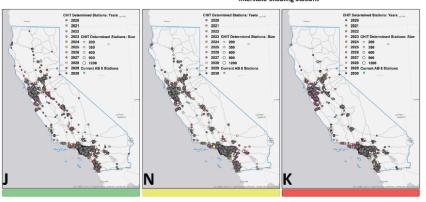
Method

Iterative review of scenario analysis with CaFCP members to define assumptions and parameters

Evaluation	Method	Ratio Coverage: Capacity	Capacity Basis	Lock Out	Priority Areas: Recalculation Frequency	Priority Areas: Minimum Threshold	Available Station Locations	Gas Station Density Following	Evolving Station Size Distribution	Low Through- put Lockout	Early Adopter % Defined	Simulation Guiding Principle
A	1 (Highest Point Basis)	2:1	2030	Station Cell	N/A	N/A	Full State	No	No	No	No	
в	1 (Highest Point Basis)	4:1	2030	Station and Adjacent Cells	N/A	N/A	Full State	No	No	No	No	
с	1 (Highest Point Basis)	4:1	Annually Variable	Station and Adjacent Cells	N/A	N/A	Full State	No	No	No	No	"Where would we put hydrogen
D	2 (Highest Points within Priority Areas)	2:1	Annually Variable	Station and Adjacent Cells	Annual	Constant	Full State	No	No	No	No	stations if we could put them anywhere in the state such that we optimize local capacity and coverage needs? What can we also learn about the order of these
E	2 (Highest Points within Priority Areas)	2:1	Annually Variable	Station and Adjacent Cells	Every 30 stations	Constant	Full State	No	No	No	No	stations?"
F	2 (Highest Points within Priority Areas)	2:1	Annually Variable	Station and Adjacent Cells	After 3 stations in each	Constant	Full State	No	No	No	No	
G	2 (Highest Points within Priority Areas)	2:1	Annually Variable	Station and Adjacent Cells	After 1 station in each	Decreases over time	Full State	No	No	No	No	
н	2 (Highest Points within Priority Areas)	2:1	Annually Variable	Station and Adjacent Cells	After 1 station in each	Decreases over time	Restricted Around Gas Stations	Yes	No	No	No	
1	2 (Highest Points within Priority Areas)	2:1	Annually Variable	Station and Adjacent Cells	After 1 station in each	Decreases over time and starts broader	Restricted Around Gas Stations	Yes	No	No	No	
J	2 (Highest Points within Priority Areas)	2:1	Annually Variable	Station and Adjacent Cells	After 1 station in each	Decreases over time and starts broader	Restricted Around Gas Stations	Yes	Yes	No	No	"We have candidates for the optimal
к	2 (Highest Points within Priority Areas)	2:1	Annually Variable	Station and Adjacent Cells	After 1 station in each	Decreases over time and starts broader	Restricted Around Gas Stations	Yes	Yes	Yes	No	locations, but can only choose a subset. Which ones do we choose to optimize coverage and capacity, and in what
L	2 (Highest Points within Priority Areas)	2:1	Annually Variable	Station and Adjacent Cells	After 1 station in each	Decreases over time and starts broader	Restricted Around Gas Stations	Yes	Yes	Yes	Yes	order ?"
м	2 (Highest Points within Priority Areas)	2:1	Annually Variable	Station and Adjacent Cells	After 1 station in each	Decreases over time	Restricted Around Gas Stations	Yes	Yes	No	Yes	
N	2 (Highest Points within Priority Areas)	2:1	Annually Variable	Station and Adjacent Cells	After 1 station in each	Decreases over time	Restricted Around Gas Stations	Yes	Yes	Reduced	Yes	

Scenario Selection

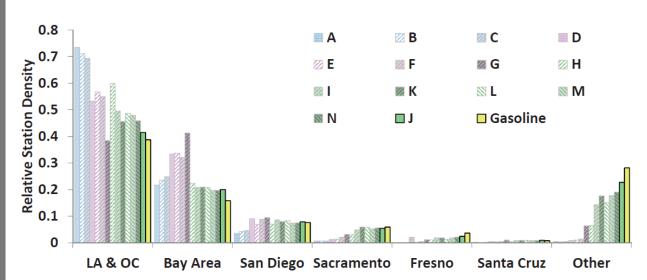
CHIT Determined Stations: Years CHIT Determined Stations: Years **CHIT Determined Stations: Years** 0 2020 0 2020 0 2020 0 2021 2021 2021 0 2022 0 2023 0 2023 · 2023 CHIT Dete 2023 CHIT Determined Sta · 2023 CHIT Dete 0 2024 · 200 0 2024 200 2024 200 2026 2026 2027 2027 2028 () 1200 2028 () 1200 2028 0 2029 Current AB 8 Stationr 2029 Current AB 8 Station 2029 Current AB & Station


Balanced "Base" Evaluation Result

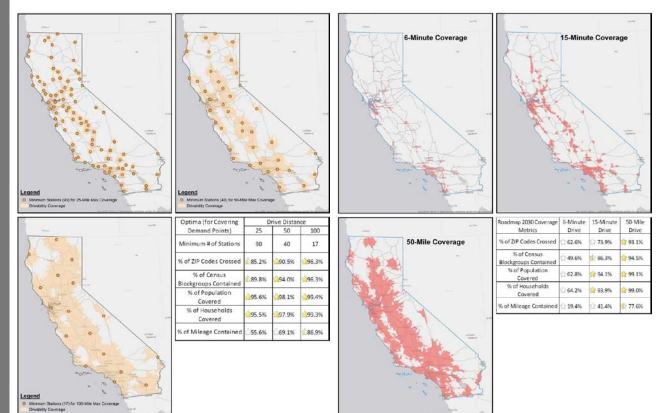
Lacking Guidance of Available Gasoline

Station Data for Tuning

Restricted Growth Rules Resulting in Loss of Interstate-Enabling Stations


Scenario Incompletely Defined

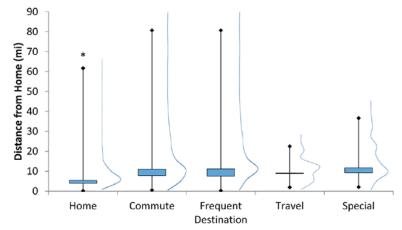
Investigated results of several combinations of parameter settings


Scenario Evaluation

Finalized scenario most balanced and similar to gasoline

Scenario Evaluation

Finalized scenario balances geographic optimization and market needs, provides equitable baseline coverage, ensures convenience in core markets, and enables longdistance travel


GEOSPATIAL CVRP

ANALYSIS

Geospatial Analyses

 Drivers who identify as fueling near home drive shorter distances to fuel

Categorized Station Location

 Non-trivial portion of drivers may be fueling further than they need to

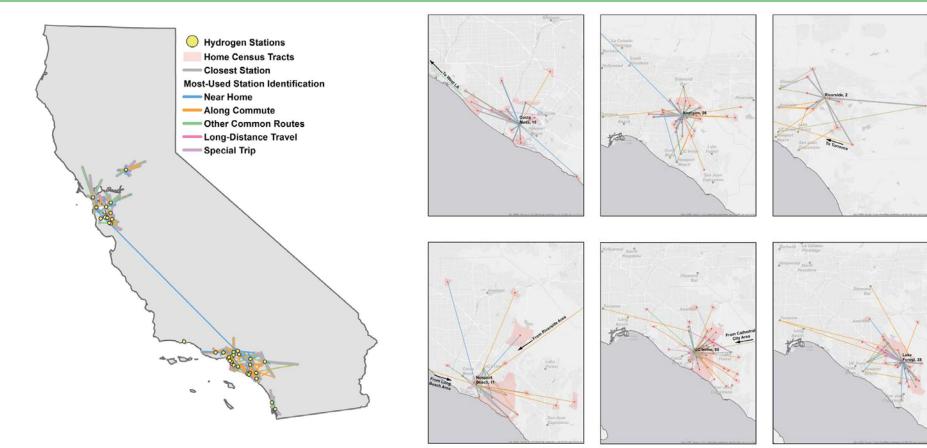
	Reported Generalized Location of Most-Used Station								
	Home	Commute	Frequent Destination	Travel	Special				
Respondents whose most-used station is the closest to home	244	102	54	5	26				
Respondents whose most-used station is NOT the closest to home	118	109	43	10	31				
Percentage of respondents whose most-used station is the closest to home	67%	48%	56%	33%	46%				
	Aggregated pe	rcentage of respor	ndents whose most-	used station	500/				

Aggregated percentage of respondents whose most-used station is the closest to home.

Geospatial Analyses

 Longer daily driving may lead drivers to be less likely to report needing a station near home than at other locations

TABLE 4: INCREMENTAL CHANGES IN ODDS RATIO FOR CHOOSING THE "COMPARISON" LOCATION OVER THE "BASELINE" LOCATION AS THE MOST NECESSARY TO ENABLE EXCLUSIVE USE OF FCEV PER INCREMENTAL INCREASE OF 10 MILES IN DAILY DRIVE¹¹


			Comp	oarison Loo	ation	Descriptive Daily Drive Stats					
		н	с	D	т	All Others	Mean	Median	Min	Max	
	Н		4.7%	2.6%	-9.7%	2.5%	77.2	45.0	5	500	
line tion	С	-4.6%		-2.1%	-5.6%	-4.5%	129.5	77.5	9	450	
Baseline Location	D	-2.6%	2.1%		-3.5%	-1.4%	100.8	50.0	14	500	
	Т	0.9%	5.6%	3.5%		2.4%	71.0	45.0	5	300	

Geospatial Analyses

- Daily driving distance does not appear to be associated with differences in the influence of station locations on purchase decision
 - TABLE 5: INCREMENTAL CHANGES IN ODDS RATIO AND P-VALUE FOR CHOOSING THE "COMPARISON" LOCATION OVER THE "BASELINE" LOCATION AS THE MOST INFLUENTIAL IN THE PURCHASE DECISION PER INCREMENTAL INCREASE OF 10 MILES IN DAILY DRIVE¹¹

		Odds Ratio						p-Value					
		Comparison Location						Comparison Location					
		н	с	D	т	All Others	н	с	D	т	All Others		
o ⊑	н		1.6%	0.9%	-0.5%	9.8%		0.067	0.448	0.698	0.212		
Baseline Location	С	-1.6%		-0.8%	-2.1%	-1.5%	0.067		0.510	0.100	0.055		
Bas Loc	D	-0.9%	0.8%		-1.4%	-0.3%	0.448	0.510		0.356	0.752		
	т	0.5%	2.1%	35.6%		1.2%	0.700	0.099	0.356		0.297		

Geospatial Usage Patterns

QUESTIONS

