CMA CGM and Energy Observer on the road to shipping decarbonization
CMA CGM Group: key figures

<table>
<thead>
<tr>
<th>257 shipping lines</th>
<th>Over 110,000 staff members worldwide</th>
<th>3 million* TEU of fleet capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over 420 ports of call in 160 countries</td>
<td>21 million* TEU transported</td>
<td>48 terminals under management</td>
</tr>
<tr>
<td>755 offices worldwide</td>
<td>566* vessels</td>
<td>USD 31.45 bn* of revenue</td>
</tr>
<tr>
<td>750 warehouses</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* 2020 figures
CMA CGM : A modern vessel fleet

LNG as a transition with immediate benefits for GHG and air quality

The CMA CGM JACQUES SAADE, 400 meters long and with a capacity of 23,000 twenty-foot containers, is the new flagship of the CMA CGM Group. She is the first container ship of this size to be powered using Liquefied Natural Gas.
CMA CGM AND ENERGY OBSERVER JOIN FORCES TO MAKE HYDROGEN ONE OF THE ENERGY SOURCES OF TOMORROW

- A shared ambition: zero-emission shipping
- A shared challenge: the large-scale deployment of neutral carbon energy such as hydrogen in the shipping industry
- Combining the innovation of an experimental vessel with the expertise of a world leader in shipping and logistics
The containership of tomorrow: toward net zero emissions

- E-fuels such as hydrogen or ammonia: Up to 100% emissions
- Innovative propellers: -3% to -5% emissions
- Hybridisation & Electric propulsion: -3% to -5% emissions
- Air injection to reduce drag: Up to -3% emissions
- Smart Ship to optimize routing and identify over-consumption: -5% to -8% emissions
- Improved aerodynamic design: -2% to -3% emissions
- Improved hydrodynamic design in waves based on real operational profile: -5% to -8% emissions
- Wind Assistance: -5% to -15% emissions

Hybridisation & Electric propulsion: Up to 2% to -3% emissions

E-fuels such as hydrogen or ammonia: -3% to -5% emissions

Hybridisation & Electric propulsion: -3% to -5% emissions

Air injection to reduce drag: Up to -3% emissions

Wind Assistance: -5% to -15% emissions

Smart Ship to optimize routing and identify over-consumption: -5% to -8% emissions

Improved aerodynamic design: -2% to -3% emissions

Improved hydrodynamic design in waves based on real operational profile: -5% to -8% emissions